Comparison of Particle Shedding of High Purity Pumps

Mark Litchy CT Associates, Inc.

Juergen Hahn Levitronix GmbH

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions July 9, 2013

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions CTA Publication #118

Introduction

- Semiconductor devices are extremely sensitive to particulate contamination.
- As feature sizes continue to decrease, the need for purity continues to increase.
- High purity pumps are used in many semiconductor processes:
 - bulk chemical delivery
 - ultra pure water systems
 - recirculating etch baths
 - and other high purity process applications
- Particulate contamination can:
 - directly reduce product yield
 - degrade the performance and lifetime of filters

Test Procedure

- 12 high purity pumps from 5 different manufacturers were evaluated for particle shedding in UPW.
- Pump sizes were chosen based on similarity to Levitronix BPS-1, BPS-3, BPS-4, and BPS-4000 maglev centrifugal pumps.
- Operating conditions (outlet pressure and flow rate) were chosen such that all pumps in a group could be evaluated at similar conditions.

Pump Size	Flow rate (gpm)	Pressure (psig)
Small	1.0-2.5	10 - 15
Intermediate	2.5 - 5.0	15 - 30
Large	5 - 10	20 - 40
Extra large	3 - 50	50 - 90

Comparison of pumps evaluated

		Maximum	Maximum		
Manufacturer	Pump Type	Flow Rate	Discharge Pressure		
		(gpm)	(psig)		
	Small Pumps				
Levitronix BPS-1	maglev centrifugal	5.5	23		
A1	diaphragm	5.3	60		
B1	diaphragm	2.9	70		
	Intermediate Pump	S			
Levitronix BPS-3	maglev centrifugal	20	36		
A2 diaphragm		11	80		
B2 diaphragm		14	45		
	Large Pumps				
Levitronix BPS-4	maglev centrifugal	37	65		
A3	diaphragm	22	80		
B3	diaphragm	17	70		
Extra Large Pumps					
Levitronix BPS-4000	maglev centrifugal	74	91		
C1	magnetic drive centrifugal	70	78		
D1 magnetic drive centrifugal		175	72		

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions CTA Publication #118

Schematic of particle shedding test system (other pumps)

Schematic of particle shedding test system (extra large pumps)

ITRS Requirements for 2011 and Beyond

Table YE3 Technology Requirements for Wafer Environmental Contamination Control							
Year of Production	2011	2012	2013	2014	2015	2016	
Flash % Pitch (nm) (un-contacted Poly)(f)	28	25	23	20	18	15.9	
DRAM % Pitch (nm) (contacted)	40	36	32	28	25	22.5	
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)	38	32	27	24	21	18.9	
MPU Printed Gate Length (nm) ††	35	31	28	25	22	19.8	
MPU Physical Gate Length (nm)	24	22	20	18	17	15.3	
Critical particle size (nm) [1]	25	22.5	20	17.9	15.9	14.2	

Ultrapure Water [29]						
Resistivity at 25°C (MOhm-cm)	18.2	18.2	18.2	18.2	18.2	18.2
Total ozidizable carbon (ppb) [22]	<1	<1	<1	<1	<1	<1
Critical Organics as C (ppb) [41]	TBD	TBD	TBD	TBD	TBD	TBD
Non-polar Organics as C (ppb) [41]	TBD	TBD	TBD	TBD	TBD	TBD
Polar Protic Organics as C (ppb) [42]	TBD	TBD	TBD	TBD	TBD	TBD
Polar Aprotic Organics as C (ppb) [42] [43]	TBD	TBD	TBD	TBD	TBD	TBD
Bacteria (CFU/liter) [38]	<1	<1	<1	<1	<1	<1
Total silica (ppb) as SiOz [18]	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Colloidal Silica (ppb) s SiO2 (add note)	TBD	TBD	TBD	TBD	TBD	TBD
Number of particles >critical particle size (see	4000	4000	4000	4000	4000	4000
above) (#/L) [26]						
Dissolved ozygen (ppb) (contaminant based) [16]	<10	<10	<10	<10	<10	<10
Dissolved nitrogen (ppm) [10]	8-18	8-18	8-18	8-18	8-18	8-18
Metals (ppt each) (Co, Cr,Ga,Ge,Mn,Mo,Sr,Ti,)	<10	<10	<10	<10	<10	<10
Critical metals (ppt, each)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
(Ag,Al,Au,Ba,Ca,Cu,Fe,Hf,K,Li,Mg,Na,Ni,Pt,Zn)						
Other critical ions (ppt each) [24]	<50	<50	<50	<50	<50	<50

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions CTA Publication #118

Problems associated with optical particle counters

- Sensitivity
 - Current technology: 25-40 nm particle detection
- Low inspection flow rates
 - 0.25-3.75 ml/min
- False counts
 - Cosmic rays, electronic noise, stray scattering, molecular scattering, etc.
- Gas bubbles
- Index contrast
- Particle coincidence

PSDs: Small pumps

PSDs: Intermediate pumps

PSDs: Large pumps

PSDs: Extra large pumps @ 50 psig

PSDs: Extra large pumps @ 90 psig

Extra large pump particle concentrations relative to BPS-4000

Comparison of pump mean concentration ratios at all test conditions

Pump	Pump Type	Geometric Mean of the Concentration Ratios of the Following Pumps to the Comparable Sized Levitronix Pumps		
Manufacturer		$\geq 0.1 \mu m$	≥ 0.5 µm	
	1	17	120	
А	2	18	130	
	3	6	72	
	1	23	48	
В	2	7	40	
	3	32	280	
C 1		8	7	
D	1	190	430	

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions CTA Publication #118

Slide 19

Slide 22

Summary of effect of operating conditions on particle shedding

		Increasing Pressure		Increasing Flow Rate		
Manufacturer	Pump Type	Small	Large	Small	Large	
		Particles	Particles	Particles	Particles	
Small Pumps						
Levitronix	BPS-1	0	0	0	0	
А	1	+	0	-	-	
В	1	0	0	+	+	
	Inter	rmediate Pur	nps	_		
Levitronix	BPS-3	0	0	0	0	
А	2	+	0	+	+	
В	2	++	++	0	0	
	Ι	Large Pumps				
Levitronix	BPS-4*	+	+	+	0	
А	3	+	+	0	0	
В	3	0	0	0	0	
Extra Large Pumps						
Levitronix	BPS-4000	0	0	0	0	
С	1	+	+	0	0	
D	1	++	+	0	0	

*Although a small increase was observed as outlet pressure increased, in absolute values, shedding from this pump was still lower than comparably sized pumps.

Concentration Change	Concentration Increase due to Increasing Pressure (%/psig)	Symbol	Concentration Change due to Increasing Flow Rate
Small Decrease	<0	-	> a factor of 2
None	0-5	0	< a factor of 2
Small Increase	5-20	+	> a factor of 2
Large Increase	>20	++	NA

CTA pub #118.pptx Slide 23

Key:

Particle Concentrations after 1-3 minute long dry runs (#/mL)

Dry Run		<u>></u> 0.1 μm			<u>></u> 0.5 μm	
, Test	BPS-4000	C1	D1	BPS-4000	C1	D1
			At 10 n	ninutes		
1	5	65	1,650	0.1	0.3	40
2	8	1,500	>10,000	0.05	2	3,600
3	5	550	>10,000	0.03	10	650
4	10	100	>10,000	0.02	3	400
			At 1	hour		
1	<5	20	800	<0.02	0.1	10
2	<5	1,100	>10,000	<0.02	2.5	4,000
3	<5	200	>10,000	<0.02	0.1	250
4	<5	35	5,000	<0.02	0.3	70
	At 5 hours					
1	<5	10	300	<0.02	0.03	5
2	<5	1,000	>10,000	<0.02	5	200
3	<5	150	>10,000	<0.02	0.5	200
4	<5	40	4,000	<0.02	0.1	60

2013 Sematech Workshop of Nanoparticle Defectivity Issues in Solutions CTA Publication #118

Summary

- The 4 maglev centrifugal pumps shed the fewest particles of the 12 pumps evaluated, regardless of operating conditions.
 - In most cases, the particle concentrations measured downstream of the Levitronix pumps were very close to the concentrations (within a factor of five) measured without a test pump.
 - The slopes of the PSDs downstream of the Levitronix and mag drive centrifugal pumps were steeper than the slopes of the diaphragm pumps and were similar to the slope measured without a test pump.
 - Therefore, the ratios of concentrations of the diaphragm to the Levitronix pumps generally increased as particle size increased.
 - The diaphragm pumps shed up to 1000 times as many particles as a comparably sized Levitronix pump and was strongly dependent on both particle size and pump type.
 - The ratios of concentrations of the mag drive centrifugal to the Levitronix pumps was relatively constant with increasing particle size.
 - C1 typically shed 3-30 times as many particles as the BPS-4000.
 - D1 typically shed 20-2000 times as many particles as the BPS-4000.

Summary

- Operating conditions had smaller effects on particle concentrations than pump type and particle size.
 - Pump outlet pressure had a greater effect on particle concentrations than flow rate.
 - Particle concentrations typically remained the same or increased with increasing pressure.
 - Particle shedding typically increased as outlet pressure increased for both the centrifugal pumps and for some of the diaphragm pumps. Little effect of outlet pressure was observed for the Levitronix pumps.
 - Flow rate appeared to have little effect regardless of pump type or outlet pressure over the range of flow rates evaluated in this study.
- During the mag drive centrifugal pump dry run tests, the results were highly variable and even after 5 hours concentrations were sometimes 100 times higher than measured at the same operating conditions prior to the dry run tests.
- During the BPS-4000 dry run tests, particle concentrations typically stabilized within 20 minutes and particle concentrations were consistently low and repeatable.

