A New Method for Determining the Size Distribution of the Working Particles in Colloidal Suspensions

Don Grant CT Associates, Inc. 7121 Shady Oak Road, Eden Prairie, MN

March 19, 2008

Introduction

- There are numerous processes where the size distribution of particles in colloidal suspensions influences the efficacy of the process.
- One example is chemical-mechanical planarization (CMP) slurries used in the semiconductor industry.
- The techniques presently used to determine the PSD typically only measure relative particle concentrations and often presume the shape of the distribution.
- This presentation describes a new technique that allows measurement of both size and concentration of the working particle size distribution.
- The presentation focuses on CMP slurries, but is applicable to numerous types of colloidal suspensions.

Outline

- Method description
- Measurement of "monodisperse" particles
 - Comparison to dynamic light scattering
 - Comparison of measured and claimed particle size uniformity
 - Comparison of measured concentrations
- Measurement of slurry particle size distributions
 - Comparison to dynamic light scattering
- Example of tracking slurry properties during handling
 - Comparison to dynamic light scattering
 - Comparison to large particle tail measurement
- Example of measuring filter particle retention efficiency
- Summary

Measurement method – Ultrafine atomization (UFA)

Patent pending.

Scanning mobility particle sizer (SMPS)

Differential mobility analyzer (DMA)

Condensation particle counter (CPC)

Measurement method – Ultrafine atomization (UFA)

Patent pending.

Key technical challenge

- Want to have no more than 1 particle in each droplet.
- Non-volatile <u>dissolved residue</u> in the UPW and slurry will form particles when the droplets from the atomizer are dried. These residue particles can interfere with the <u>suspended particle analysis</u>.
- The atomizer must produce small, uniformly-sized droplets to prevent interference with the particle analysis.

Droplet size distributions produced by different atomizers

Residue interference with Atomizer D

Presented at the Particle Society of Minnesota Spring Meeting, March 19, 2008.

Slide 11

Sizing of 20, 50, and 80 nm PSL particles

CT Associates, Inc. Pub #77

Spring Meeting, March 19, 2008.

Measured CV of 20nm PSL

CT Associates, Inc. Pub #77

Spring Meeting, March 19, 2008.

Comparison between claimed and measured PSL size uniformity

Spring Meeting, March 19, 2008.

Comparison to 50nm Optical Particle Counter

60nm Calibration curve

Sizing of colloidal silica

PSD in CMP slurry A – Silica particles

UFA – Dynamic Light Scattering (DLS) Comparison Silica particle slurry A

CT Associates, Inc. Pub #77

Presented at the Particle Society of Minnesota

PSD in silica particle slurry B

Measuring the effect of handling on Slurry A PSD

Presented at the Particle Society of Minnesota Spring Meeting, March 19, 2008.

Measuring the effect of handling on slurry PSD Volume weighted concentrations

Presented at the Particle Society of Minnesota Spring Meeting, March 19, 2008.

Effect of handling – comparison to dynamic light scattering (NICOMP 380ZLS)*

UFA

NICOMP

* - Particle Sizing Systems, Santa Barbara, CA.

Effect of handling – comparison to dynamic light scattering (NICOMP 380ZLS) – NICOMP normalized to UFA

UFA

NICOMP

Presented at the Particle Society of Minnesota Spring Meeting, March 19, 2008.

Change in cumulative concentrations over time during handling

Presented at the Particle Society of Minnesota

Comparison between UFA and large particle tail measurements during slurry handling

Filter retention test stand schematic

suspension

Filtrate concentrations over time

Example of filter retention over time

Presented at the Particle Society of Minnesota Spring Meeting, March 19, 2008.

Summary

- A new method for the measurement of the working particle size distribution in colloidal suspensions has been described.
- The method allows measurement of particle concentrations as well as size.
- The method was shown to:
 - Accurately size and count PSL particles of known size
 - Allow measurement of the working particles in CMP slurries
 - Agree qualitatively with dynamic light scattering measurements of slurry working particle size distributions
 - Discern changes in slurry working particle size distributions induced by handling
 - When combined with single optical particle counting this technique allows measurement of particle concentrations from ~ 15 to > 10,000 nm
 - Allow measurement of particle retention by filters down to ~ 15 nm.