

Identification and Management of Potential Particle Precursors from Mixed Bed Ion Exchange

Larry Zazzera¹, Stefan Huber², Gary Van Schooneveld¹, Bonnie Marion ³

¹CT Associates, Inc., 7121 Shady Oak Road, Eden Prairie, MN 55344
² DOC-Labor GmbH, Eisenbahnstr. 6, 76229 Karlsruhe, Germany
³ FTD Solutions, 5775 Mark Dabling Blvd. Suite 190 Colorado Springs, CO 80919

This type of study can not be done alone! SEMI C79 Team Members

Name	Affiliation	Name	Affiliation	
Alex Hunter	Evoqua	Jochen Ruth	Pall	
Bob McIntosh	+GF+	Larry Zazzera	CT Associates	
Bonnie Marion	FTD Solutions	Lindsey Sullivan	FTD Solutions	
Brett Clark	Veolia	Majid Entezarian	3M	
Charlie Chan	3M	Pierre Vanhoorne	Lanxess	
Chuck Dale	Veolia	Tony Ozzello	Entegris	
Derek Oberreit	Kanomax FMT	Wilson Poon	WL Gore	11/
Gary Van Schooneveld	CT Associates	Zhengdong Liu	Lanxess THA	JK
Glen Sundstrom	Evoqua	Siddarth Sampath	Entegris	• >
Hans-Jurgen Wedemeyer	Lanxess	Stefan Huber	DOC-Labor	N.
Jikku Thomas	Kanomax FMT			

What We Know and a Problem Statement

- Particle precursors (dissolved compounds) are present in UPW and pose a risk of depositing on wafers.
- Mixed bed (MB) ion exchange (IX) is a known potential source of particle precursors.
- To mitigate the risk, the SEMI UPW Task Force is developing a **particle precursor challenge** based on IX resin to evaluate sub-15 nm filters used for ultrapure water (UPW).
- Size, composition and reactivity data from extract is needed to identify potential particle precursors and to develop organic particle precursor challenges.

3 Implications for the industry: Wafer Particle Adders

Comparing particles added to the wafer after rinsing and drying with different IX extracts

IX Resin Decomposition and Potential Particle Precursors

Technical Objectives

1. Extract "useful" concentrations of organics from isolated SAC and SBA resins

Extract organics from Ion Exchange Resin (UPW 80°C, 7 days)

- 2. Characterize the size, chemical composition and reactivity of organic particles and particle precursors
 - Liquid Nanoparticle Sizing (LNS)
 - Size exclusion Liquid Chromatography with organic carbon detection (LC-OCD)
 - Fourier Transform infrared (FTIR)
- 3. Provide knowledge to develop nanoparticle challenges for sub 15 nm filter devices

Potential Particle Precursors according to LC-OCD

Compounds highlighted in red are Potential Particle Precursors

SAC extract contains polydisperse PSS and SBA extract contains small organic nitrogen molecules. All are Potential Particle Precursors

9

MICRO 23 Particle Formation Pathway 1: "Pi-stacking"

- SAC extracts were dried and re-dissolved.
- New HMW material was formed.

- PSSs of SAC were probably subject to "Pi-stacking" and subsequent aggregation.
- Potential pathway to particle formation: PSS "Pi-stacking"

MICRO 23 Particle Formation Pathway 2: "Ion pairing"

- SAC+SBA extracts were dried and re-dissolved.
- New HMW material was formed.

 PSS from SAC reacted with Triton B from SBA to produce ion-pairs which subsequently aggregated

Potential pathway to particle formation: PSS – Triton B "Ion pair complexes"

MICRO 23 Particle formation Pathway 3: "Condensation"

Potential pathway to particle formation: Amino Acid condensation polymerization

MICRO 23 "Condensa

"Condensation" Pathway Confirmed by FTIR

Amide search and functional group classification for wet and dry SBA

SBA extract hydration state	Search returns amide classification ?	Functional group classification includes amide IR Bands?		
Aqueous	No	No		
Dry	Yes, amides and polyamides	Yes, C=O stretch "Amide I" CNH bend "Amide II" CN stretch of amide		
H R H O H C C N C C O H H O R H H O R H				

IR and LC-OCD data indicate condensation reaction of amino acids to form amide bonds and HMW polypeptides *Potential pathway to particle formation: Amino Acid condensation polymerization*

Summary and Take-aways

- MB IX in the polish loop releases trace levels of dissolved organics a.k.a. potential particle precursors.
- SAC extract contains monomeric and polymeric PSS and is an obvious source of potential particle precursors.
- SBA extract contains low molecular weight organic nitrogen which is not an obvious particle precursor.
- SAC and SBA extracts can react upon drying to form new high-molecular weight material.
- We proposed three pathways to transform potential particle precursors to particles on wafers.
 - 1. "Pi-stacking" of PSS from SAC
 - 2. "Ion pairing" of anionic PSS from SAC with cationic Triton B from SBA
 - 3. "Condensation polymerization" of amino acids from SBA
- These findings shed new light on the potential impacts of the polishing MB, and the development of particle and particle precursor challenges that could be used to evaluate sub-15 nm filter devices for UPW.