Modeling of component lifetime based on accelerated life tests and gas permeation measurements

Gary Van Schooneveld, Dennis Chilcote and Don Grant

May 12, 2011

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

Introduction

- Metallic parts in chemical handling systems are subject to corrosion by acid gases like hydrogen chloride (HCl) and hydrogen fluoride (HF).
 - Examples include springs in valves and magnets in mag drive and maglev pumps
- Polymers, like perfluoroalcoxy (PFA), are often used to isolate these parts from acid gas containing liquids to prevent corrosion.
- Acid gases in these liquids can permeate through polymers and corrode the parts.
- Ozonated solutions are also finding increased application in semiconductor processing.
- Ozone also has the potential to permeate polymers and accelerate corrosion.
- Prior work has been conducted on the measurement of HCl and HF permeation rates through polymers and developing a life prediction model based on permeation rates.
- This paper will discuss the on-going accelerated life tests of pumps and impellers in HCl and permeation measurements of ozone through PFA films.

Outline

- Diffusion theory
- The effect of operating conditions on permeation rate thru PFA
 - Concentration
 - Temperature
 - PFA thickness
- Permeation rates of HCl and HF thru various polymers
- Accelerated life testing
 - BPS-3 room temperature
 - BPS-1, -3, -4 elevated temperature testing
 - BSP-3 impeller elevated temperature testing
- Predicted relative lifetimes under different operating conditions
- Ozone permeation test
- Summary

Steady-state permeation

$$M = \frac{\mathbf{P}P_V A}{T}$$

Where M = Mass flow rate P = Permeability coefficient P_V = Gas vapor pressure A = surface area available for diffusion T = material thickness

Note: The mass flow rate is proportional to the gas vapor pressure; not the acid concentration.

Comparison between vapor pressures of HF and HCl over hydrofluoric and hydrochloric acids

Source: Brosheer at all, *Ind and Eng Chem* 39(3):423-427, 1947 and Hydrofluoric Acid Properites, Honeywell (2002).

Source: JH Perry, <u>Chemical</u> <u>Engineers' Handbook, 4th Edition</u>, McGraw Hill (1963) p 3-61

Comparison of HCl and HF vapor pressures

HCl concentration	Temperature	Vapor pressure
(% by weight)	(°C)	(atm)
5	20	5.5 x 10 ⁻⁷
6.3	75	2.1 x 10 ⁻⁴
37	20	0.17
37	40	0.55
32	75	0.66
37	60	1.51

Vapor pressure of HCl over selected hydrochloric acid solutions

Vapor pressure of HF over selected hydrofluoric acid solutions

HF concentration	Temperature	Vapor pressure
(% by weight)	(°C)	(atm)
0.5	20	1.2 x 10 ⁻⁵
5.0	20	7.5 x 10 ⁻⁵
49	20	0.018
49	60	0.15

The effect of vapor pressure, temperature, and thickness on the permeation rates of HCl and HF through PFA

Test System Schematic

The effect of temperature and hydrochloric acid concentration

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

Permeability coefficient

 $\mathbf{P} = \frac{MT}{P_V A}$

Where $\mathbf{P} = \mathbf{Permeability \ coefficient}$ M = Mass flow rate T = material thickness $P_V = \text{Gas vapor pressure}$ A = surface area available for diffusion

Permeability coefficient units:

Gas volume – thickness Area in contact with gas– Time - Vapor pressure $\frac{\text{cm}^3(g) - \text{mm}}{\text{m}^2 - \text{day} - \text{atm}}$

The effect of temperature on the permeability coefficient of HCl through PFA

G Van Schooneveld et al (2011), Presented Conference Sponsored by I

Permeation of HCl through PFA

- Permeation coefficient
 - Increases with temperature
 - Independent of chemical concentration
 - Independent of thickness
- Permeation rate
 - Is proportional to the acid gas vapor pressure
 - Increases with temperature
 - Is inversely proportional to the coating thickness

Polymer permeability comparison

Permeation coefficient of HCl through different polymers

Comparison between HCl and HF permeation coefficients

Polymer	Permeation coefficient, $cm^3(g)$ -mm/M ² -day-atm				
	HCl	HF			
PE	430	-			
PP	600	4200			
PVDF	75	8800			
ECTFE	45	3600			
PFA	300	2600			
PTFE	250	2700			
Proprietary Coating	8	2600			

@ 33°C

Comparison between HCl and HF permeation rates

Dolumer	Relative p	ermeability	Vapor pre	ssure, atm	Relative permeation rate		
rorymen	HC1	HF	37% HCl	49% HF	37% HCl	49% HF	
PE	9.6	-	0.44	0.043	4.3	-	
PP	13.3	93	0.44	0.043	5.9	4.0	
PVDF	1.7	196	0.44	0.043	0.76	8.4	
ECTFE	1.0	80	0.44	0.043	0.44	3.4	
PFA	6.7	58	0.44	0.043	3.0	2.5	
PTFE	5.6	60	0.44	0.043	2.5	2.6	
Coated PFA	1.4	58	0.44	0.043	0.63	2.5	

$$M = \frac{P R A}{T}$$

@ 33°C

Component lifetime predictions

Assumption: Component lifetime is inversely proportional to the rate at which the acid gas reaches the component.

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

Predicted relative lifetimes of PFA coated components under expected use conditions

Acid	Concentration (weight %)	Temperature (°C)	Relative lifetime	
	6.3	75	3,100	
HCl	37	20	22	
	37	40	2.7	
	32	75	1.0	
	0.5	20	8,400	
HF	5	20	1,350	
	49	20	5.5	

Accelerated life tests in chemical

- Three studies on-going
- BPS-3 pump circulating 35-37% HCl at room temperature
- BPS-4 pump circulating in 30-32% HCl at 75°C.
- Static soak of BPS-3 PFA impellers with two encapsulation thicknesses (1.4 mm and 0.7 mm) in 30-32% HCl at 75°C.

BPS-3 Room Temperature Testing

- PVDF housing
- ECTFE encapsulated magnet
- 35-37% by weight HCl
- Room temperature (18-23°C)
- Pump speed 400 rpm
- Trace metal samples taken every 6 month
- Visual examination of impeller once a year.
- Operating nearly 8 years without a failure.

Test Schematic

Pump and impeller after 7 years of operation in concentrated HCl

BPS-4 Elevated Temperature Testing

- PTFE pump body
- PFA encapsulated magnet
- Pump speed 4350 rpm
- Chemical pressure -14 ± 2 psi.
- Average HCl concentration 31.3% by weight
- Average operating temperature 72.6°C
- Trace metal samples taken every 6 months
- Pump has running time of more than 4 years without failure.

Test Apparatus

Exposure Time Equivalents

Operating Conditions	Run-time, Years (Total Test)
As Tested (30-32% HCI @ 70°C)	4.1
37% HCI @ 25°C	34.9
6.3%, 75°C	9000

³ 1), Presented at the CMP and Ultrapure ponsored by Levitronix.

Impeller Testing in Hot HCl

- Static soak of 6 impellers.
- Two PFA encapsulation thicknesses (3 each).
 - 1.4 mm (standard)
 - 0.7 mm (non-standard)
- Average HCl concentration 31.4% by weight.
- Assay measured at beginning and end of each conditioning period.
- Average conditioning temperature 74.8°C.
- Trace metal samples taken every 3 months including blank.
- Photo examination every 3 months.
- Dimensional changes (diameter) measured.
- Impellers run at Levitronix BPS-3 after 16 months exposure.

Trace Metal Extraction

Is this extraction rate significant?

), Presented at the CMP and Ultrapure onsored by Levitronix.

Trace Metal Extraction

• Assume:

- Recirculation system with a 100 liter tank.
- Chemical usage rate of 100 liters per day.
- Worst case extraction rate of 0.02 ug/day iron (0.06 ug/day÷3 impellers) from prior figure.

Change in iron concentration in the chemical would be 0.0002 ppb. (0.02 ug/day÷100 liters/day)

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

Visual Changes

0.7 mm impeller (non-standard)

1.4 mm impeller (standard)

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

Dimensional Changes

		Diam Rec	Diameter as Received		Diameter after HCl Exposure		
Description	ID	Mean (mm)	SD (mm)		Mean (mm)	SD (mm)	Diameter Change (mm)
	HBA 077	51.28	0.025		51.73	0.074	0.45
Standard Impeller	GGQ 177	51.24	0.015		51.67	0.136	0.43
(51.4 mm)	GGQ 170	51.24	0.040		51.67	0.084	0.43
	Average	51.25	0.03		51.69	0.10	0.44
	HBA 085	49.99	0.031		50.49	0.157	0.50
Special Impeller (50.0 mm)	HBA 398	49.89	0.050		50.44	0.071	0.55
	HBA 320	50.04	0.053		50.70	0.118	0.66
	Average	49.98	0.04		50.54	0.12	0.57

Levitronix design approach for contamination prevention

- Pumps are designed sense and respond to changes to impeller size.
- The response provides an early indication of impeller swelling due to magnet corrosion.
- These accelerated life tests are designed determine:
 - when the impeller size changes enough for the pump to sense and respond to impeller swelling (useful service life) and
 - if or when metal ions are released from the impeller (safe life)
- Goal is to have a safe life well beyond the useful service life of the impeller.

Levitronix "in-pump" testing

- Impellers were returned to Levitronix for testing in a BPS-3 pump.
- 3 standard thickness impellers were tested.
- Pumps were operated in water at:
 - 500 rpm, 0 lpm
 - 6000 rpm, 43 lpm
 - 6000 rpm, 79 lpm
- "Z" positions (axial position) were measured.

In-pump test results

		Production impellers "Z" postion					tion impellers "Z" postion HCI Conditioned impellers "Z" position			
Pump speed (rpm)	Flow Rate (Ipm)	# of Samples	Mean (mm)	Standard Deviation (mm)	Min (mm)	Max (mm)	Mean (mm)	Min (mm)	Max (mm)	
500	0	88	0.19	0.057	0.07	0.39	1.98	1.74	2.19	
6000	43	88	1.71	0.094	1.49	1.94	4.40	3.69	4.92	
6000	79	88	5.78	0.197	5.3	6.16	7.04	3.38	8.23	

Note: "Z" position limit is -2.5 mm to +7.0 mm.

G Van Schooneveld et al (2011), Presented at the CMP and Ultrapure Conference Sponsored by Levitronix.

CT Associates, Inc.

Predicted lifetimes based on pumps and impellers currently under test

Pump Model	Run Time (Days)	Average Temp (°C)	Average HCl Assay (wt%)	Service Life @ 37%/20°C (Years)	Safe Life @ 37%/20°C (Years)	Service Life @ 6.3%/75°C (Years)	Safe Life @ 6.3%/75°C (Years)
BPS 3	2874	RT	35-37	> 7.8	> 7.8	> 1100	> 1100
BPS 1*	546	70.0	28.7	10.5	> 12.0	1,500	> 1,700
BPS 3*	590	74.4	29.9	15.5	> 19.9	2,200	> 2,800
BPS 4	1478	72.6	31.2	> 35	> 35	>9000	>9000
BPS 3 Impellers	546	74.8	31.4	26	> 29	3600	> 3600

* Test Complete

Summary

- Previous work has shown that permeation rate of HCl and HF through PFA to:
 - be proportional to the HCl or HF vapor pressure
 - be inversely proportional to the coating thickness
 - increase with temperature
- The permeation rates of HCl through different polymers is not a good indicator for HF permeation rates through the same polymers (and vice versa).
- A model has developed to predict component failure rate resulting from HCl and HF acid gas permeation.
- The model, combined with on-going life test data, predicts pump lifetimes with PFA-coated impellers >10 years under challenging use conditions.
- No failures resulting in chemical contamination have yet to be observed in any of the exposure tests.
- In-pump impeller position readings can be used to determine impeller replacement point.